pARMS: a parallel version of the algebraic recursive multilevel solver
نویسندگان
چکیده
A parallel version of the Algebraic Recursive Multilevel Solver (ARMS) is developed for distributed computing environments. The method adopts the general framework of distributed sparse matrices and relies on solving the resulting distributed Schur complement system. Numerical experiments are presented which compare these approaches on regularly and irregularly structured problems.
منابع مشابه
pARMS: A Package for the Parallel Iterative Solution of General Large Sparse Linear System ∗ User’s Guide
For many large-scale applications, solving large sparse linear systems is the most time-consuming part. The important criteria for a suitable solver include efficiency, robustness, and good parallel performance. The Parallel Algebraic Recursive Multilevel Solver (pARMS) [8] is a suite of distributed-memory iterative accelerators and preconditioners targeting the solution of general sparse linea...
متن کاملUsing the parallel algebraic recursive multilevel solver in modern physical applications
This paper discusses the application of a few parallel preconditioning techniques, which are collected in a recently developed suite of codes Parallel Algebraic Recursive Multilevel Solver (pARMS), to tackling large-scale sparse linear systems arising from real-life applications. In particular, we study the effect of different algorithmic variations and parameter choices on the overall performa...
متن کاملpARMS: A Package for Solving General Sparse Linear Systems on Parallel Computers
This paper presents an overview of pARMS, a package for solving sparse linear systems on parallel platforms. Preconditioners constitute the most important ingredient in the solution of linear systems arising from realistic scientific and engineering applications. The most common parallel preconditioners used for sparse linear systems adapt domain decomposition concepts to the more general frame...
متن کاملA numerical experimental study of inverse preconditioning for the parallel iterative solution to 3D finite element flow equations
Integration of the subsurface flow equation by finite elements (FE) in space and finite differences (FD) in time requires the repeated solution to sparse symmetric positive definite systems of linear equations. Iterative techniques based on preconditioned conjugate gradients (PCG) are one of the most attractive tool to solve the problem on sequential computers.A present challenge is to make PCG...
متن کاملA hybrid recursive multilevel incomplete factorization preconditioner for solving general linear systems
In this paper we introduce an algebraic recursive multilevel incomplete factorization preconditioner, based on a distributed Schur complement formulation, for solving general linear systems. The novelty of the proposed method is to combine factorization techniques of both implicit and explicit type, recursive combinatorial algorithms, multilevel mechanisms and overlapping strategies to maximize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 10 شماره
صفحات -
تاریخ انتشار 2003